
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10: Virtual Memory



10.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10:  Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames 

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples



10.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Define virtual memory and describe its benefits.

 Illustrate how pages are loaded into memory using demand paging.

 Apply the FIFO, optimal, and LRU page-replacement algorithms.

 Describe the working set of a process, and explain how it is related to 
program locality.

 Describe how Linux, Windows 10, and Solaris manage virtual memory.

 Design a virtual memory manager simulation in the C programming 
language.



10.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Code needs to be in memory to execute, but entire program rarely used

• Error code, unusual routines, large data structures

 Even in those cases where the entire program is needed, it may not all be 
needed at the same time

 Consider ability to execute partially-loaded program

• Program no longer constrained by limits of physical memory

• Program and programs could be larger than physical memory

• Each program takes less memory while running -> more programs run 
at the same time

 Increased CPU utilization and throughput with no increase in 
response time or turnaround time



10.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory 

 Virtual memory – separation of user logical memory (virtual address 
space) from physical memory

• Only part of the program needs to be in memory for execution

• Logical address space can therefore be much larger than physical 
address space

 Virtual address space – logical view of how process is stored in memory

• Usually start at address 0, contiguous addresses until end of space

• Meanwhile, physical memory organized in page frames

• MMU must map logical to physical

 Virtual memory can be implemented via:

• Demand paging 

• Demand segmentation



10.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual Memory That is Larger Than Physical Memory



10.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

 Pages are only loaded when they are demanded during 
program execution

 Pages that are never accessed are thus never loaded into physical

memory

 A demand-paging system is similar to a paging system with
swapping

 Rather than swapping the entire process into memory, however, we 

use a lazy swapper

 Lazy swapper: never swaps a page into memory unless that page            

will be needed
 Swapper that deals with pages is a pager



10.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

 Similar to paging system with 
swapping (diagram on right)



10.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

 With swapping, pager guesses which pages will be used before swapping 
out again

 Instead, pager brings in only those pages into memory

 How to determine that set of pages?

• Need new MMU functionality to implement demand paging

 If pages needed are already memory resident

• No difference from non demand-paging

 If page needed and not memory resident

• Need to detect and load the page into memory from storage

Without changing program behavior

Without programmer needing to change code



Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated

 v  in-memory – memory resident

 i  not-in-memory

 Initially valid–invalid bit is set to i on all entries

 During address translation, if valid–invalid bit in page table entry is i

 page fault trap



10.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid-Invalid Bit

 Example of a page table snapshot:

 During MMU address translation, if valid–invalid bit in page table entry is i
 page fault



10.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Table When Some Pages Are Not
in Main Memory



10.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling a Page Fault (Cont.)



10.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap to 
operating system 

• Page fault

2. Operating system looks at another table to decide:

• Invalid reference  abort

• Just not in memory

3. Find free frame

4. Swap page into frame via scheduled disk operation

5. Reset tables to indicate page now in memory
Set validation bit = v

6. Restart the instruction that caused the page fault



10.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging – Worse Case

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of 
the page on the disk

5. Issue a read from the disk to a free frame:

a) Wait in a queue for this device until the read request is serviced

b) Wait for the device seek and/or latency time

c) Begin the transfer of the page to a free frame



10.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging  (Cont.)

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then  
resume the interrupted instruction



10.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pure Demand Paging

 Start process with no pages in memory

• OS sets instruction pointer to first instruction of process, non-memory-
resident  page fault occurs

• And for every other process pages, page fault occurs on first access

• Never bring a page into memory until it is required

 Theoretically, a given instruction could access multiple pages  multiple 
page faults

• Consider fetch and decode of instruction which adds 2 numbers from 
memory and stores result back to memory

• Pain decreased because of locality of reference

 Hardware support needed for demand paging

• Page table with valid / invalid bit

• Secondary memory (swap device with swap space)

• Instruction restart



Performance of Demand Paging

 Page Fault Rate 0  p  1

 Effective Access Time (EAT)

EAT = (1– p)  memory access + p  page fault overhead

 page-fault overhead

1. Service the page-fault interrupt

2. Read in the page (read the page from disk) – lots of time

3. Restart the process

 Example

 Memory access time = 200 nanoseconds

 Average page fault service time = 8 milliseconds



10.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds) 

= (1 – p  x 200 + p x 8,000,000 

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

P = 1/1000

EAT = 8.2 microseconds. 

This is a slowdown by a factor of 40!! (the access time gets 1/40!!)

 If want performance degradation < 10 percent, then EAT = 200 + 20 220

• 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

• p < .0000025  => (25 page faults in any 10,000,000 memory accesses)

• < one page fault in every 400,000 memory accesses



10.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Copy-on-Write

 Recall that the fork() system call creates a child process as a duplicate of 

its parent

• It creates a copy of the parent‘s address space for the child

 Copy-on-Write (COW) allows both parent and child processes to initially 

share the same pages in memory

• If either process modifies a shared page, only then is the page 

copied

 COW allows more efficient process creation as only modified pages are 

copied



Page Replacement

 When virtual memory management over-allocates memory, it is possible 

that all available memory is used by active processes

 In this situation, if a page fault occurs, there is no free frame to allocate it to

the requested page

 Solution

 Find some page in memory that is not currently being used and page it out

 We can free a frame by writing its contents to swap space and changing 

the page table

 Same page may be brought into memory several times



10.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Need For Page Replacement



10.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

 Page replacement increases the effective access time

 Use modify (dirty) bit to reduce overhead of page transfers
 Each page has a modify bit associated with it

 The modify bit for a page is set by the hardware whenever any word 

or byte in the page is written

 Only modified pages are written to disk

 Page replacement completes separation between logical memory and 

physical memory

 large virtual memory can be provided on a smaller physical memory



Demand Paging Algorithms

 Frame-allocation algorithm

 Determines how many frames to allocate to each process

 Page-replacement algorithm

 Selects the frames that are to be replaced

 Designing efficient algorithms is so important, because 

disk I/O is so expensive

 In general, we want the algorithm with the lowest page-fault rate



Page Replacement Algorithms

 We evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page 

faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

and there are 3 frames



Page Replacement Algorithms

 Optimal

 FIFO

 LRU (Least Recently Used)

 LRUApproximation

 Additional-Reference-Bits Algorithm

 Second-Chance Algorithm

 Counting-Based Page Replacement

 LFU (Least Frequently Used)

 MFU (Most Frequently Used)



Optimal Page Replacement

 Replace page that will not be used for longest period of time

 Example: 9 page faults

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

2

0

1

7

0

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0   1



First-In-First-Out (FIFO) Algorithm

 When a page must be replaced, the oldest page is chosen
Can be implemented using a FIFO queue

 Example: 15 page faults

7 7

0

7

0

1

0

1

2

1

2

3

2

3

0

3

0

4

0

4

2

4

2

3

2

3

0

3

0

1

0

1

2

1

2

7

2

7

0

7

0

1

7 0 1 2 0     3 0 4 2 3 0 3 2 1 2 0 1 7 0   1



10.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graph of Page Faults Versus the Number of Frames



Belady’s Anomaly

 For some page-replacement algorithms, the page-fault rate may 
increase as the number of allocated frames increases

 Example: reference string = 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



Least Recently Used (LRU)

 LRU is an approximation of the optimal algorithm
 It uses the recent past as an approximation of the near future

 LRU replaces the page that has not been used for the 
longest period of time

7 7

0

7

0

1

0

1

2

2

0

3

3

0

4

0

4

2

4

2

3

2

3

0

3

2

1

1

2

0

0

1

7

1

2

0

2

3

0

2

0

3

0

3

2

3

1

2

2

0

1

1

7

0

7

0

1

7 0 1 2 0     3 0 4 2 3 0 3 2 1 2 0 1 7 0    1



Least Recently Used (LRU)

 Stack implementation

 Keep a stack of page numbers in a double link form

 Page referenced: move it to the top

 But each update more expensive

 No search for replacement

 Counter implementation

 Every page entry has a counter; every time page is referenced through this entry, 

copy the clock into the counter

 When a page needs to be changed, look at the counters to find smallest value

 Search through table needed



Least Recently Used (LRU)

 LRU and OPT are cases of stack algorithms that don’t 

have Belady’sAnomaly

 An algorithm for which it can be shown that the set of pages in 

memory for n frames is always a subset of the set of pages that 

would be in memory with n + 1 frames

 Implementation of LRU needs hardware assistance

 The updating of the clock fields or stack must be done for every 

memory reference



LRU ApproximationAlgorithms

 LRU needs special hardware and still slow

 Few computer systems provide sufficient hardware support for true LRU

 Many systems provide some help, in the form of a reference bit

 The reference bit for a page is set by the hardware whenever that page is

referenced

 Reference bits are associated with each entry in the page table



Additional-Reference-Bits Algorithm

 Keep an 8-bit byte for each page

 At regular intervals (say, 100 ms), a timer interrupt transfers control to 

the operating system

 The operating system shifts the reference bit for each page into the 

high-order bit of its 8-bit byte, shifting the other bits right by 1 bit

 These 8-bit shift registers contain the history of page use for the 

last eight time periods
 Example: 00000000, 11111111, 11000100, 01110111

 The page with the lowest number is the LRU page, and it can be

replaced.



Second Chance Algorithm

 The basic algorithm is FIFO

 When a page has been selected, we inspect its reference bit

 If the value is 0, we proceed to replace this page

 If the value is 1, we give the page a second chance and move on to 

select the next FIFO page, its reference bit is cleared, and its arrival  

time is reset to the current

 Clock algorithm

 An implementation of the second-chance algorithm using a

circular queue



Second Chance Algorithm



Second Chance Algorithm



Enhanced Second-Chance Algorithm

 We can use reference bit and modify bit together

 Then we have four cases

 (0, 0) neither recently used nor modified - best page to replace

 (0, 1) not recently used but modified- not quite as  good, need to be 

written out

 (1, 0) recently used but clean - probably will be used again soon

 (1,1) recently used and modified - probably will be used again soon, 

and need to be written out

 We replace the first page encountered in the lowest nonempty

class



Enhanced Second-Chance Algorithm



Combined Examples



Comparison



Counting Algorithms

 Keep a counter of the number of references that have been 

made to each page

 Least Frequently Used (LFU)

 Requires that the page with the smallest count be replaced

 Problem: when a page is used heavily during the initial phase of a 

process but then is never used again

 Solution: shift the counts right by 1 bit at regular intervals



Counting Algorithms

 Most Frequently Used (MFU)

 is based on the argument that the page with the smallest count was

probably just brought in and has yet to be used

 Neither MFU nor LFU replacement is common

 The implementation of these algorithms is expensive

 They do not approximate OPT replacement well



Page-Buffering Algorithms

 Keep a pool of free frames, always
 When a page fault occurs, a victim frame is chosen as before

 However, the desired page is read into a free frame from the pool 

before the victim is written out

 When the victim is later written, its frame is added to the free-frame 

pool

 Keep list of modified pages
 When backing store otherwise idle, write pages there and set to

non-dirty



Resident Set Management

 The OS must decide how many pages to bring into main

memory

 The smaller the amount of memory allocated to each process, 

the more processes that can reside in memory.

 Small number of pages loaded increases page faults.

 Beyond a certain size, further allocations of pages will not affect 

the page fault rate.



Resident Set Size

 Fixed-allocation

 Gives a process a fixed number of pages within which to execute

 When a page fault occurs, one of the pages of that process 

must be replaced

 Variable-allocation

 Number of pages allocated to a process varies over the lifetime 

of the process



Fixed Allocation

S
 m iai  allocationfor pi

si  size of process pi  

S  si

m  total number of frames

s 

 Equal allocation

 If there are 100 frames (after allocating frames for  the OS) and 5 

processes, give each process 20 frames

 Proportional allocation

 Allocate according to the size of process

s1  10

2s  127

1 137
a  10  64  5

2 137
a  127  64  59

m  64



Replacement Scope

 The scope of a replacement strategy can be categorized 

as global or local.

 Both types are activated by a page fault when  there are no free 

page frames.

 A local replacement policy chooses only among  the resident pages 

of the process that generated the page fault

 A global replacement policy considers all unlocked pages 

in main memory



Fixed Allocation, Local Scope

 Decide ahead of time the amount of allocation to give a

process

 If allocation is too small, there will be a high page fault rate

 If allocation is too large there will be too few programs in 

main memory

 Increased processor idle time or

 Increased swapping



Variable Allocation, Global Scope

 Easiest to implement

 Adopted by many operating systems

 Operating system keeps list of free frames

 Free frame is added to resident set of process when a 

page fault occurs

 If no free frame, replaces one from another process

 Therein lies the difficulty … which to replace.



Variable Allocation, Local Scope

 When new process added, allocate number of page 

frames based on application type, program request, or 

other criteria

 When page fault occurs, select page from among

the resident set of the process that suffers the fault

 Reevaluate allocation from time to time



Resident Set Management Summary



Thrashing

 Thrashing  a process is busy swapping pages in and out

 If a process does not have “enough” pages, the page-fault 

rate is very high

 Page fault to get page

 Replace existing frame

 But quickly need replaced frame back



Thrashing



Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 10


